第39章 chiplet 互联标准将逐渐统一
Chiplet互联标准将逐渐统一
Chiplet是硅片级别的“结构-重构-复用”,它把传统的SoC分解为多个芯粒模块,将这些芯粒分开制备后再通过互联封装形成一个完整芯片。
芯粒可以采用不同工艺进行分离制造,可以显着降低成本,并实现一种新形式的IP复用。
随着摩尔定律的放缓,Chiplet成本持续提高SoC集成度和算力的重要途径,特别是随着2022年3月份UCle联盟的成立,Chiplet互联标准将逐渐统一,产业化进程将进一步加速。
基于先进封装技术的Chiplet可能将重构芯片研发流程,从制造到封测,从EDA到设计,全方位影响芯片的区域与产业格局。
自1965自摩尔定律首次被提出以来,集成电路产业一直遵循着摩尔定律向前发展。
直到近几年,随着晶体管尺寸逼近材料的物理极限,工艺节点进步的花费已难以承受,芯片性能的提升也不再显着,摩尔定律接近极致。
在此背景下,Chiplet(芯粒)技术逐渐崭露头角, 有望成为产业界解决高性能、低成本芯片需求的重要技术路线。
Chiplet创新了芯片封装理念。
它把原本一体的SoC(SystemonChip,系统级芯片)分解为多个芯粒,分开制备出这些芯粒后,再将它们互联封装在一起,形成完整的复杂功能芯片。
这其中,芯粒可以采用不同的工艺进行分离制造,例如对于CPU、GPU等工艺提升敏感的模块,采用昂贵的先进制程生产;而对于工艺提升不敏感的模块,采用成熟制程制造。
同时,芯粒相比于SoC面积更小,可以大幅提高芯片的良率、提升晶圆面积利用率,进一步降低制造成本。
此外,模块化的芯粒可以减少重复设计和验证环节,降低芯片的设计复杂度和研发成本,加快产品的 迭代速度。
Chiplet被验证可以有效降低制造成本,已成为头部厂商和投资界关注的热点。
Chiplet的技术核心在于实现芯粒间的高速互联。
SoC分解为芯粒使得封装难度陡增,如何保障互联封装时芯粒连接工艺的可靠性、普适性,实现芯粒间数据传输的大带宽、低延迟,是Chiple
芯粒可以采用不同工艺进行分离制造,可以显着降低成本,并实现一种新形式的IP复用。
随着摩尔定律的放缓,Chiplet成本持续提高SoC集成度和算力的重要途径,特别是随着2022年3月份UCle联盟的成立,Chiplet互联标准将逐渐统一,产业化进程将进一步加速。
基于先进封装技术的Chiplet可能将重构芯片研发流程,从制造到封测,从EDA到设计,全方位影响芯片的区域与产业格局。
自1965自摩尔定律首次被提出以来,集成电路产业一直遵循着摩尔定律向前发展。
直到近几年,随着晶体管尺寸逼近材料的物理极限,工艺节点进步的花费已难以承受,芯片性能的提升也不再显着,摩尔定律接近极致。
在此背景下,Chiplet(芯粒)技术逐渐崭露头角, 有望成为产业界解决高性能、低成本芯片需求的重要技术路线。
Chiplet创新了芯片封装理念。
它把原本一体的SoC(SystemonChip,系统级芯片)分解为多个芯粒,分开制备出这些芯粒后,再将它们互联封装在一起,形成完整的复杂功能芯片。
这其中,芯粒可以采用不同的工艺进行分离制造,例如对于CPU、GPU等工艺提升敏感的模块,采用昂贵的先进制程生产;而对于工艺提升不敏感的模块,采用成熟制程制造。
同时,芯粒相比于SoC面积更小,可以大幅提高芯片的良率、提升晶圆面积利用率,进一步降低制造成本。
此外,模块化的芯粒可以减少重复设计和验证环节,降低芯片的设计复杂度和研发成本,加快产品的 迭代速度。
Chiplet被验证可以有效降低制造成本,已成为头部厂商和投资界关注的热点。
Chiplet的技术核心在于实现芯粒间的高速互联。
SoC分解为芯粒使得封装难度陡增,如何保障互联封装时芯粒连接工艺的可靠性、普适性,实现芯粒间数据传输的大带宽、低延迟,是Chiple